CISM higher-order dynamics: model solution

From Interactive System for Ice sheet Simulation

Contents

= 1 Governing Equations

= 2 Coordinate Transform

= 3 Operating Splitting

= 4 Solution of the Non-linear System Through a Fixed Point Iteration
= 5 Final Matrix Form

= 6 Newton-based Methods for Solutions of the Non-linear System

= 7 The Jacobian Free Approach

Governing Equations

The final form of the equations we'd like to solve is:

T 41 (I]()l> | i (I]()l> I i (77()l> = —2i (nﬂ> — i (‘I ﬁ) | pqa—s
Ox \ ' Ox oy \ Oy 0z \ 0z oz \ 'Oy oy \ Ox " Ox
0 [Ov 0 ov o [ov .0 (Ou 0 (Ou Js

Coordinate Transform

For ice sheet modeling, it is convenient to recast the governing equations using a dimensionless, stretched vertical
coordinate (often called a sigma coordinates (http://atmo.tamu.edu/class/metr452/models/2001/vertres.html)). The
stretched vertical coordinate is defined as:

(s —2)
H

This means that at the surface of the ice sheet 0 = 0, and at the base 0 = 1 regardless of the ice thickness. As a result of
this transformation, a coordinate (x,y,z) is mapped to (x',y',0). This means that function derivatives must be re-written

0
(using _f as an example) as:

Ox
of ofox' Of oy I of Oo
or Oz’ 0xr Oy Oxr 0o Ox

9 .
Similarly for i and ()f
dy 0z

g =

. We can simplify this by assuming that

ox' oy

and
ox' 0x' oy oy
Oy’ 0z Oz’ 0z

0.

This assumption is valid if the bed and surface gradients are not too large. This simplifies the above to:

of of Ofoo
oxr Ox' l do Ox
of _of | df00
oy Oy 0o dy
of ﬂ do

0z do 0z

Rescaling parameters ax, ay, bx’ by, and cxy are defined. For the x derivative case (the y derivative case is analogous)

we have

1, Js oH

%= 17w ~ 7o)

by = 2% 4 g, %% _ i(?i - ad)l — a‘,.(?i)
ox’ do H 0z Ox'? ox’
da, da, Oa, Oa,

“ = B T %8s T By Moo

Using these, expressions for the x derivatives become:

of of of

— = 3 @,
or Ox' "Oo

o ((Ou_ 0 (o) 900 (du\ 00 (du) (9 2 9 RAWCZAWD
or \"oz] "9z \"az) "z 00 \"0z) "oz 02 \"as) "\ 8z) 90 \"9s) '\ 532) "0

where hatted values refer to the coordinate directions in sigma coordinates. Similarly, the first cross-stress term on the
RHS is given by

d 78’0 0 7(31.' I(')a 0 761.' I(f)rf 0 7('}1..' If)a do 0 7(3'0 lf)QG 7(31.'
oz \"ay) "9z \"ag) "9z00 \"55) 950z \"o0) "z 0500 \"90) " 920§ " 00

One term has become five terms and each one of those is pretty ugly looking on its own. Luckily, there is a lot of

symmetry here. Notice that if we wanted to design subroutines to discretize the terms on the RHS, we could re-use a lot
of them by either applying them to the correct velocity component (to either the U or the V discretization) or by passing
the appropriate arguments (by passing either the grid spacing in the X direction or the Y direction, where appropriate).

A similar transform is applied to each of the terms in the governing equations given above. At any point within the grid,
the grid spacing, coordinate transform, and viscosity information associated with the unknown velocity components (U
and V) is made discrete using finite differences. This information ultimately equates to coefficients on the unknown
velocities, allowing the governing equations over the entire grid (with appropriate discretizations for boundary
conditions) to be recast as a system of n equations in # unknowns. In turn, this system is solved using standard linear
algebraic methods for large, [sparse (http://en.wikipedia.org/wiki/Sparse_matrix) | systems of equations.

Operating Splitting

In the governing equations given above, note that for the x equation we have moved all terms containing gradients in v to
the right-hand side (RHS) (and vice-versa for the y equation).

This allows us to solve the equations using an operator splitting approach; for the x equation, we treat v as known (where
we take the values of v from the previous iteration, as discussed further below) and solve for u, and vice versa when we
solve the y equation for v. The "splitting" refers to the fact that we are breaking the multi-dimensional divergence
operation into two steps; rather than solving one big matrix equation for # and v simultaneously, we solve two smaller
matrix equations in sequence with one of the unknowns treated as a known "source" term. This procedure was probably
more common and important years ago when it was desirable to keep the matrix equations as small as possible for
memory management issues. On today's machines, with fewer memory limitations (in particular when dealing with
codes designed to run on parallel, distributed memory architectures) this splitting is not necessary and may even lead to
some undesirable numerical side effects (i.e. a slow-down in the convergence of iterations used to treat nonlinearity in
the governing equations).

A general matrix form of the "split" equations, where coefficients on the u and v velocity components (i.e. viscosity, grid
spacing, scalars) are contained in the block matrices A, is given by

Auu 0 u . bu - Aqu
O AVV \"% a bv - Avuu
Auuu = bu - Aqu, Avvv - bv - Avuu

where the uu subscript denotes block matrices containing coefficients for gradients on u in the equation for the x
component of velocity (i.e.). The subscript uv denotes block matrices containing coefficients for gradients on v in the
equation for the x component of velocity (and similarly for the vv and vu subscripts). On the right-hand side, the single
subscripts u and v are attached to the geometric source terms for the x and y components of velocity, respectively.

Solution of the Non-linear System Through a Fixed Point Iteration
The non-linearity in the equations - the fact that the coefficients on the velocity components (the viscosity) are dependent
on the velocity (or more specifically, the velocity gradients) - is handled through a "fixed-point iteration"

(http://en.wikipedia.org/wiki/Fixed_point_iteration) . A general fixed point iteration for a vector of unknowns u can be
written as

W =B ('I.l.l"_l),

where k is the index for the u being solved for and B is a matrix operation performed on the components of u# obtained at
the previous iteration, k- /. The "fixed point" occurs when the values of u at k and k-1 are equal to within some given
tolerance (at which point the iteration process is halted). CISM has options for implementing both "Picard" and
"Newton"-based fixed-point iterations. For the Picard iteration (standard in CISM), the matrix coefficients with a
velocity dependence are simply based on the velocities obtained at the previous iteration. In most cases, this equates to
using velocities obtained from the previous iteration to calculate the strain rate components that go into the calculation of
the effective viscosity, 1.

Final Matrix Form

When accounting for both the operator splitting and the Picard iteration on the effective viscosity, the final form of the
matrix equations solved in CISM becomes

AI.-—l 0 uk bu . Al.-—lvk—l
{ Bu Al.-—l] lvk-] = |ibv _A#XluA-—I]
AfF1y = bu — ARkl AF-ly — bv — ARkt

where the index k denotes an unknown value being solved for during the current non-linear iteration and the index k-1
denotes a lagged value taken from solution at the end of the previous non-linear iteration (again, here the lagging is
primarily with respect to the effective viscosity, the value of which is calculated using velocity gradients obtained at the
end of the previous iteration). The final form of the matrix equations given above represents a linear system; for the
solution at any particular nonlinear iteration k, all of the coefficients on the unknown velocity components « and v are
held "frozen" during the solution of the linear system. This linear system can be solved using any practical method. For
large, sparse systems, some variant on the iterative conjugate gradient method (e.g. BiCG, GMRES) is generally the
most efficient. In this case the linear system is not solved exactly but is solved to within some small tolerance of the
"true" solution.

Newton-based Methods for Solutions of the Non-linear System

Without any operator splitting, the generic matrix form of the equations to be solved can be written as
A(u)u=b.

The linearized form of the equations to be solved using the Picard solution can be written as

ut — A(ul.-—l)—lb.

The full nonlinear system to be solved can be written as

F(u) = A(u)u—-b

with the solution for the uknown vector u given by

F(u) = 0.

A Newton-based solution for this system of equations, based on a first-order Taylor series expansion about the solution
for u at iteration k-1, can be written as

F(u*) = F(u* ') + F'(u*)ou" ",

where
Fl(uk—l) _ Jl\'—l

is the system Jacobian with individual components give by

OF,(uF)
C UJ'
and
éul.—l _ uk _ uL—l

is the Newton update to be solved for. One method for doing so is by solving

suft = — (I TR,

The advantage of Newton-based methods is that, with a good initial guess for the solution, convergence rates are very
often quadratic (e.g. the residual decreases quadratically, so that at iteration k one has a residual of 0.1, at iteration k+1/, a
residual of 0.01, and at iteration k+2 a residual of 0.0001), whereas Picard-based iterations are much slower to converge.
A figure comparing rates of convergence for Picard versus Newton on a CISM tests case is shown below. The Newton
method is based on the work of Lemieux et al. (submitted to JCP), which is discussed further below.

JENK
i Picard
10 E
0
-E) 2
o 10 2
B
(73]
O
= -3
10 |
()]
=
'o —4
= 10 E
&)
S o
* 40 1
e
—
o] 6
? 10 4
Q]
- -
107} :
107° ' '
0 5 10 15 20 25 30 35 40

iterations

Rates of convergence for the nonlinear iteration in CISM.

The Jacobian Free Approach

In practice, the model Jacobian may either be too difficult or to expensive too form. A "Jacobian Free Newton-Krylov"
(JFNK) approach has recently been implemented in CISM (Leimieux et al., submitted to JCP), largely following
methods discussed in Knoll and Keyes (2004) (http://www.sciencedirect.com/science?_ob=ArticletURL&_udi=B6WHY-
49KSNJ6-4&_user=2493154& _coverDate=01%2F20%2F2004& _alid=1678413922& _rdoc=1&_fmt=high&
_orig=search&_origin=search&_zone=rslt_list_item& _cdi=6863& _sort=r&_st=13&_docanchor=&view=c&_ct=1&
_acct=C000057551&_version=1& _urlVersion=0& _userid=2493154&md5=8871f929a8adbac698ecf277ac0c99cef&
searchtype=a) . The crux of the method comes from noting that, when solving the last equation above using a Krylov
method (e.g. Conjugate Gradients, GMRES, etc.) the solution for the Newton update is taken from a combination of
Krylov vectors that span the subspace

2 n—1
span {1‘(,,J1‘(,,J ro, .oy J 1‘(,} = span {ro,Jvy,Jva, ... Jv, 1}

This implies that, when using a Krylov method, one only ever needs to calculate matrix vector products of the form Jv
when building up the subspace that approximates the solution vector jq3.

Following Knoll and Keyes (2004), note that the necessary matrix vector products can be approximated through
nonlinear function evaluations and a perturbation as

F(u+tev)— F(u)‘

<

Jv ~

It is not immediately obvious why this approximation is valid. To verify this, take a few steps back and consider a
nonlinear system of equations of two variables, #/ and u2. The right-hand side of the above equation can be expanded as

Fi(u 11 .1 1o)—Fi(uy .
F (l.l | EV) . F(l.l) B 1(uy+evq 113—%—5519) 1 (g .u2)
Fo(uy+evy ua+evo)—Fol(ug) |
£

<

A first-order Taylor series expansion approximation to this is given by

aF aF
Fi(u1 u2)+evi == 4sva =2 — Fi(u1,u2)

— ! o
F(u I :,V)—F() Juq tun
~ Fy° _ aFy)
€ Fo(uy .l12)+51.‘1m;+51»‘2m;—Fg(ul aa)
£

Finally, note that the right-hand side of the above equation is equal to

Jv ~ (1l (uo
o JFs F s JF5 |

Loy < duo

with the Jacobian matrix given by

JdFy JdFy
| du .,
J= |:i)F]g OF%]

Jduy duo

This matrix vector product is what needs to be calculated repeatedly while building up the Krylov subspace vectors that
combine to approximate the Newton update vector 3. The important point is that at no point in this process does one
need to calculate the entire Jacobian matrix. Another important point is that the accuracy of the approximation to the
Jacobian is proportional to the small perturbation term, £.

Go to Blatter-Pattyn model.

Go to Blatter-Pattyn Boundary Conditions.

Go to CISM governing equations and numerical solution.

Return to main coarse page

Retrieved from "http://websrv.cs.umt.edu/isis/index.php/CISM_higher-order_dynamics:_model_solution"

= This page was last modified on 15 March 2011, at 15:03.

